
Exploring methods for solving
linear systems

By Kevin Perez

Linear Systems May not be copied or distributed without the permission of the author Page 1 of 21

Abstract
This document provides an introduction to direct methods for solving linear systems of equations for
an audience interested in computationally implementing and solving linear systems. It may be used
as a reference by engineers that are seeking the best method for solving a problem that can be
described as a linear system. An application of linear algebra in engineering is explored to motivate
the theme. Key topics in linear algebra are highlighted and briefly introduced. A randomly generated
linear system with a square coefficient matrix is thoroughly analyzed and solved while introducing the
direct methods.

1. Introduction

Rationale

Modern real world processes described by systems of linear equations tend to be overwhelmingly
complex because of the vast amount of data that is available. A linear system generated from some
structured or unstructured data source of unbeknown size may need to be quickly solved because of
business time constraints or other critical requirements. To consistently solve linear systems quickly,
a computer or computer operator should know which of the well-established methods to apply. This
project introduces some of the most used methods for solving a linear system with the perspective of a
novice in the field of linear algebra. This project will reinforce existing knowledge about linear sys-
tems and assure the reliability of existing methods for solving linear systems.

Purpose

The purpose of this project is to document the capabilities of linear system solvers and assure the
reliability of each method. The information is delivered from the perspective of novices in the field of
linear algebra, and with this regard, the reader should consider the information within is easy to digest
and straightforward. The goal of the writers is to introduce and motivate linear algebra as a powerful
tool for solving system characterized by linear equations. To readers with prior knowledge of the
subject, the content below will reinforce existing knowledge about linear systems.

Research questions

Can a linear system retain its integrity after decomposition? Will any combination of valid row opera-
tions really generate a row equivalent system with different scalar values?

Learning the advantages and disadvantages of all linear solvers is important in order to decide which
is the most appropriate and optimal method for solving systems of linear equations, or linear systems.
There are methods specifically designed for solving linear systems that fit certain properties such as
the dimensions of the matrices and vectors and whether there is a pattern in the dispersion of coeffi-
cients in the matrix. In this document, a linear system defined over the field of real numbers will be
dissected and solved using several methods to prove the capability and reliability of the solutions of
each method provides.

April 2021 Exploring methods for solving linear systems Kevin Perez

Page 2 of 21 May not be copied or distributed without the permission of the author Linear Systems

2. Linear system concepts in engineering and science

ISO/IEC 11172-3:1993: The MPEG-1 Standard

When vectors are introduced in a Calculus course, they are described as having magnitude and direc-
tion. However, vectors can be used to model abstract objects such as audio signals where the compo-
nents of the vectors represent a frequencies defined by a periodic function.

A problem faced in audio signal processing is encoding analog sound signals into PCM (Pulse Code
Modulation) sound samples and then compressing the samples to MPEG-1 Audio Layer 1 (or MP1)
defined in ISO/IEC 11172-3. The analog to digital conversion process which involves measuring
voltages in fixed time intervals is called sampling. The amount of measurements per time interval is
the sampling rate. Each sample is stored in a fixed amount of bits. To put into perspective the
amount of signals that are processed, a Digital Audio Compact Disc is encoded with a stereo (2-
channel) audio signal where each channel is sampled at 44.1kHz with 16 bits per sample. That is,
analog signals are encoded into 1,411,200 bits per second!

DCT6
III =

cos (0) cos (π / 12) cos (π / 6) cos (π / 4) cos (π / 3) cos (5 π / 12)
cos (0) cos (π / 4) cos (π / 2) cos (3 π / 4) cos (π) cos (5 π / 4)
cos (0) cos (5 π / 12) cos (5 π / 6) cos (5 π / 4) cos (5 π / 3) cos (25 π / 12)
cos (0) cos (7 π / 12) cos (7 π / 6) cos (7 π / 4) cos (7 π / 3) cos (35 π / 12)
cos (0) cos (3 π / 4) cos (3 π / 2) cos (9 π / 4) cos (3 π) cos (15 π / 4)
cos (0) cos (11 π / 12) cos (11 π / 6) cos (11 π / 4) cos (11 π / 3) cos (55 π / 12)

The matrix above represents the fast, discrete, type 3, cosine transform derived from the following
formula: DCT6

III=(cos((π/n)(i +1/2)k)) for i = 0 to n-1 and k = 0 to n-1 [3, pp. 10]. It is used to synthesize
sequences of (PCM) subband samples where each subband sample contains quantized values of a
narrow spectrum of sound frequency [3, pp. 6]. The matrix above, smaller than the typical matrix an
encoder processes, shows expressions in each row that define a periodic function with a fixed fre-
quency. The matrix can be used to transform other matrices or vectors . It should also be pointed out
that the matrix can be reduced prior to transforming a signal because there are repeating wave ampli-
tudes. Other cosine transform matrices can be used if the granularity of the audio samples needs to
be increased.

The MPEG-1 standard specifies only the bitstream and decoding process, but the encoder can be
implemented differently. This is a good example for why engineers need to be familiar with linear
algebra and how to programmatically implement methods for solving linear systems.

3. Problem statement and system description
This section will introduce some common terms and symbols used throughout this document that
will help readers digest the material discussed in subsequent sections.

Below is the system of linear equations that we will be solving. We need to determine whether the b

Kevin Perez Exploring methods for solving linear systems April 2021

Linear Systems May not be copied or distributed without the permission of the author Page 3 of 21

can be written as a linear combination of a1, a2,..., a20.

a11 x1 + ⋯ + a1 j xj + ⋯ + a1 m xm = b1

⋮

ai 1 x1 + ⋯ + aij xj + ⋯ + aim xm = bi

⋮

an 1 x1 + ⋯ + anj xj + ⋯ + anm xm = bn

This system of linear equations, denoted by the left curly brace emphasizing the relationship among
the equations, known as vector equations, can be converted to a matrix equation of the form Ax=b.

A =

a11 a12 ⋯ a1 m

a21 a22 ⋯ a2 m

⋮ ⋮ ⋱ ⋮

an 1 an 2 ⋯ anm

 x =

x1

x2

⋮

xm

 b =

b1

b2

⋮

bn

A is referred to as the coefficient matrix with n rows and m columns. It contains only the coefficients
from the expressions on the left hand side of the equations. In the case that all coefficients are real
values, A is said to be a real matrix, or A ∈ n x m. If the matrix the same number of rows and columns,
then it is called a square matrix.

The expressions on the right hand side of the equations are assigned to the rows of a column vector
denoted by the letter b ∈ n .

The letter x ∈ m denotes the column vector of unknown variables that should satisfy all equations in
the system simultaneously. These are the variables in question when solving a system of linear equa-
tions. More than one vector x may satisfy the system.

Variables A, b, and x and their variations will be used throughout this document to succinctly repre-
sent a linear system.

Viewing a linear system in the matrix format is useful because it detracts from using the variables
x1,x2, ... , xn and equality signs in each equation while operating on the numerical values of the system.
Viewing only the numerical values in the system makes it easier to transform the system in order to
arrive at a solution, or solutions, if any exist. The abstraction is also a natural representation in com-
puter programs such as Mathematica because values are stored in a data structure similar to a matrix.
Therefore the matrix format will be used from this point forward to represent and solve the system.

When solving equations, the expressions on both sides of the equality sign need to receive the same
operation in order for the equation to remain symmetrical. To enforce the same rules on a linear
system an augmented matrix is formed. An n x m augmented matrix, denoted (A | b), which contains
the columns of A in the first (n-1) columns and the column vector b as column n is a useful representa-
tion of the system because it serves as a reminder that the same operations performed on the left
hand side of the equation must be performed on the right hand side due to the symmetry of equality.
This will be a useful form for solving a linear system using particular methods.

Aaug = (A | b) =

a11 a12 ⋯ a1 n ⋮ b1

a21 a22 ⋯ a2 n ⋮ b2

⋮ ⋮ ⋱ ⋮ ⋮ ⋮

am 1 am 2 ⋯ amn ⋮ bm

The vertical line in the augmented matrix separating the values of A and b is usually omitted when

April 2021 Exploring methods for solving linear systems Kevin Perez

Page 4 of 21 May not be copied or distributed without the permission of the author Linear Systems

solving a system in this form.

4. Linear equations declaration
To explore the methods for solving a linear system, a 20 by 20 real linear system has been generated.
All steps in the process of solving the system have been accomplished with Wolfram Mathematica.
Here is the initialization of the system of linear equations we will use in our demonstration.

(* Clearing variables to be used as the unknown variables *)

Clear [x1, x2, x3, x4, x5, x6, x7, x8, x9,

x10, x11, x12, x13, x14, x15, x16, x17, x18, x19, x20]

(* Initializing a list containing conventionally named

variables that will be used to store the solutions

represented by the unknown variables in the linear system. *)

vars = {x1, x2, x3, x4, x5, x6, x7, x8, x9, x10,

x11, x12, x13, x14, x15, x16, x17, x18, x19, x20};

(* Initialize variables storing linear system equations *)

eq1 = 65.94 x1 - 182.45 x10 - 266.27 x11 + 462.43 x12 + 842.9 x13 + 233.29 x14 + 995.66 x15 +

704.14 x16 + 148.03 x17 + 970.26 x18 + 371.37 x19 - 440.77 x2 - 188.38 x20 - 594.7 x3 +

699.79 x4 - 417.02 x5 + 432.28 x6 - 572.34 x7 - 907.73 x8 - 267.13 x9 ⩵ 34.47;

eq2 = 626.79 x1 - 28.04 x10 + 807.26 x11 - 314.4 x12 + 297.48 x13 - 562.44 x14 - 238.82 x15 +

926.47 x16 - 983.03 x17 - 613.3 x18 - 971.89 x19 + 632.85 x2 - 322.12 x20 + 832.5 x3 +

919.47 x4 - 147.94 x5 + 129.16 x6 - 413.52 x7 - 903.96 x8 - 984.56 x9 ⩵ 903.16;

eq3 = 379.34 x1 - 410.84 x10 + 353.19 x11 + 500.78 x12 - 556.59 x13 - 192.94 x14 - 48.36 x15 +

174.16 x16 + 784.86 x17 + 740.45 x18 + 767.39 x19 + 443.73 x2 - 351.58 x20 - 757.34 x3 +

537.64 x4 - 531.19 x5 + 709.44 x6 + 353.84 x7 + 119.51 x8 + 271.98 x9 ⩵ -836.4;

eq4 = 469.02 x1 + 251.69 x10 - 571.51 x11 - 828.33 x12 - 472.26 x13 - 172.72 x14 +

2.37 x15 - 218.71 x16 + 266.92 x17 - 953.73 x18 - 97.48 x19 + 668.92 x2 - 67.55 x20 -

11.59 x3 + 753.51 x4 + 707.9 x5 + 840.63 x6 + 721.59 x7 - 481.73 x8 + 49.17 x9 ⩵ 317.83;

eq5 = 169.26 x1 - 78.5 x10 + 320.69 x11 - 98.82 x12 - 576.33 x13 + 157.87 x14 - 772.42 x15 +

552.54 x16 + 304.47 x17 - 788.61 x18 - 182.78 x19 + 798.32 x2 - 826.79 x20 - 135.73 x3 -

458.94 x4 + 40.17 x5 - 594.19 x6 - 334.26 x7 - 489.39 x8 + 808.86 x9 ⩵ -402.;

eq6 = -552.42 x1 - 630.9 x10 + 631.84 x11 + 649.54 x12 + 133.88 x13 + 199.25 x14 +

950.14 x15 - 377.78 x16 - 270.66 x17 - 775.68 x18 + 23.61 x19 - 113.19 x2 + 306.48 x20 -

580.43 x3 + 990.18 x4 - 615.94 x5 + 718.8 x6 - 648.02 x7 - 826.76 x8 + 249. x9 ⩵ 790.;

eq7 = -543.17 x1 + 68.47 x10 + 203.12 x11 - 59.59 x12 - 492.75 x13 + 860.32 x14 - 838.9 x15 +

628.1 x16 - 9.23 x17 - 958.24 x18 + 850.51 x19 + 117.75 x2 - 62.33 x20 + 359.13 x3 +

883.1 x4 + 865.15 x5 + 678.63 x6 - 238.36 x7 - 34.73 x8 + 52.67 x9 ⩵ -745.84;

eq8 = 811.41 x1 + 175.22 x10 - 860.87 x11 + 966.07 x12 - 352.11 x13 + 183.6 x14 -

Kevin Perez Exploring methods for solving linear systems April 2021

Linear Systems May not be copied or distributed without the permission of the author Page 5 of 21

933.21 x15 + 370.88 x16 - 24.71 x17 + 380.07 x18 - 670.33 x19 + 12.92 x2 + 169.47 x20 -

866.6 x3 + 19.57 x4 - 363.81 x5 - 875.38 x6 - 971.07 x7 + 845.35 x8 - 992.7 x9 ⩵ -903.4;

eq9 = -600.08 x1 - 356.16 x10 + 123.8 x11 - 470.64 x12 + 80.95 x13 - 387.57 x14 - 777.32 x15 -

71.62 x16 - 403.13 x17 + 519.81 x18 + 516.76 x19 - 512.71 x2 + 186.9 x20 - 462.16 x3 +

167.76 x4 + 630.07 x5 + 523.52 x6 - 335.63 x7 + 15.39 x8 - 936.2 x9 ⩵ -367.55;

eq10 = 378.95 x1 + 427.84 x10 - 807.15 x11 - 849.86 x12 - 571.91 x13 - 99.13 x14 - 414.3 x15 +

645.45 x16 - 543.21 x17 - 35.32 x18 - 97.47 x19 - 467.7 x2 - 324.59 x20 - 861.62 x3 -

111.97 x4 + 220.49 x5 + 170.97 x6 - 533.27 x7 - 658.91 x8 - 979.97 x9 ⩵ -564.15;

eq11 = -492.87 x1 + 592.74 x10 - 110.29 x11 + 362.36 x12 - 128.01 x13 -

377.34 x14 + 638.49 x15 - 873.77 x16 - 928.8 x17 - 735.66 x18 +

882.01 x19 + 227.51 x2 - 338.56 x20 - 667.17 x3 + 246.83 x4 +

557.13 x5 - 856.95 x6 + 56.34 x7 + 798.44 x8 + 507.54 x9 ⩵ 278.43;

eq12 = 631.87 x1 - 619.1 x10 - 712.02 x11 - 454.88 x12 + 328.99 x13 + 839.72 x14 -

51.3 x15 + 648.65 x16 - 4.9 x17 + 629.45 x18 - 539.45 x19 - 540.45 x2 - 666.51 x20 -

238.7 x3 + 985.6 x4 + 152.46 x5 - 638.94 x6 - 398.08 x7 + 927.71 x8 - 136.97 x9 ⩵ 483.;

eq13 = -284.08 x1 + 639.09 x10 - 848.11 x11 - 724.28 x12 + 494.36 x13 -

698.93 x14 - 247.34 x15 + 286.78 x16 + 177.74 x17 - 158.99 x18 +

854.85 x19 - 965.25 x2 - 643.42 x20 + 692.73 x3 + 435.32 x4 -

421.15 x5 - 477.05 x6 - 778.96 x7 + 858.4 x8 - 583.6 x9 ⩵ -483.35;

eq14 = -696.29 x1 - 989.77 x10 - 465.1 x11 - 135.54 x12 - 210.06 x13 - 54.58 x14 -

515.13 x15 + 943.77 x16 + 199.82 x17 - 119.55 x18 - 667.3 x19 - 353.8 x2 + 399.16 x20 -

114.64 x3 + 531.11 x4 - 853.14 x5 - 501.3 x6 - 0.28 x7 + 92.94 x8 + 797.43 x9 ⩵ -197.66;

eq15 = 562.68 x1 - 793.07 x10 + 84.5 x11 + 223.55 x12 + 821.56 x13 + 744.73 x14 - 94.48 x15 -

815.9 x16 + 188.7 x17 - 932.63 x18 + 174.47 x19 - 843.81 x2 - 969.09 x20 + 388.52 x3 -

996.41 x4 - 96.69 x5 + 835.98 x6 + 774.89 x7 + 838.07 x8 + 827.36 x9 ⩵ 19.54;

eq16 = 204.75 x1 - 434.22 x10 + 171.11 x11 + 30.25 x12 - 879.34 x13 +

826.11 x14 + 762.62 x15 + 611.79 x16 - 947.76 x17 + 269.34 x18 -

266.05 x19 + 410.75 x2 - 843.78 x20 + 695.21 x3 + 136.15 x4 +

159.5 x5 + 354.08 x6 + 113.38 x7 + 518.57 x8 + 583.42 x9 ⩵ 808.97;

eq17 = -686.75 x1 + 362.37 x10 - 271.52 x11 - 604.26 x12 - 577.72 x13 -

281.44 x14 - 421.57 x15 - 318.52 x16 + 708.66 x17 - 802.64 x18 +

139.21 x19 + 800.09 x2 + 180.08 x20 + 546.7 x3 - 70.72 x4 + 553.74 x5 -

643.98 x6 - 111.55 x7 + 296.34 x8 - 864.56 x9 ⩵ -335.67;

eq18 = -737.56 x1 - 878.05 x10 + 606.05 x11 + 815.06 x12 - 34.63 x13 +

234.29 x14 + 887.2 x15 + 322.67 x16 - 587.67 x17 + 964.14 x18 +

348.76 x19 - 62.46 x2 - 918.05 x20 + 917.99 x3 + 840.56 x4 +

819.04 x5 + 454.84 x6 - 819.73 x7 + 934.08 x8 - 535.84 x9 ⩵ -467.79;

eq19 = 927.55 x1 - 425.99 x10 - 814.86 x11 - 98.2 x12 - 671.63 x13 + 856.94 x14 + 749.07 x15 -

191.32 x16 - 979.13 x17 + 923.73 x18 - 428.21 x19 + 77.85 x2 - 862.77 x20 - 959.3 x3 +

941.95 x4 + 947.41 x5 + 895.7 x6 - 313.83 x7 - 597.41 x8 + 349.24 x9 ⩵ -232.68;

eq20 = -525.57 x1 - 670.52 x10 - 641.16 x11 + 614.21 x12 - 669.64 x13 -

623.88 x14 - 819.64 x15 + 816.26 x16 + 905.78 x17 + 753.09 x18 -

607.54 x19 - 614.14 x2 + 720.61 x20 - 906.27 x3 + 130.58 x4 +

April 2021 Exploring methods for solving linear systems Kevin Perez

Page 6 of 21 May not be copied or distributed without the permission of the author Linear Systems

387.06 x5 - 402.56 x6 - 72.54 x7 - 421.9 x8 + 958.16 x9 ⩵ 786.12;

(* Combine equations to form linear system *)

linearSystem = {eq1, eq2, eq3, eq4, eq5, eq6, eq7, eq8, eq9,

eq10, eq11, eq12, eq13, eq14, eq15, eq16, eq17, eq18, eq19, eq20};

(* Extract the coefficients in the system *)

linearSystemCoeff = Normal@ CoefficientArrays [linearSystem , vars];

(* Store RHS coefficients of equations in a variable *)

b = -linearSystemCoeff 〚1〛;

(*Store LHS coefficients of equations in a variable *)

A = linearSystemCoeff 〚2〛;

originalSystem = matrixToSystem [A, b];

Style [DisplayForm [GridBox [{{"", Column [originalSystem]}}]], 5]

65.94 x1 - 440.77 x2 - 594.7 x3 + 699.79 x4 - 417.02 x5 + 432.28 x6 - 572.34 x7 - 907.73 x8 - 267.13 x9 - 182.45 x10 - 266.27 x11 + 462.43 x12 + 842.9 x13 + 233.29 x14 + 995.66 x15 + 704.14 x16 + 148.03 x17 + 970.26 x18 + 371.37 x19 - 188.38 x20 ⩵ 34.47

626.79 x1 + 632.85 x2 + 832.5 x3 + 919.47 x4 - 147.94 x5 + 129.16 x6 - 413.52 x7 - 903.96 x8 - 984.56 x9 - 28.04 x10 + 807.26 x11 - 314.4 x12 + 297.48 x13 - 562.44 x14 - 238.82 x15 + 926.47 x16 - 983.03 x17 - 613.3 x18 - 971.89 x19 - 322.12 x20 ⩵ 903.16

379.34 x1 + 443.73 x2 - 757.34 x3 + 537.64 x4 - 531.19 x5 + 709.44 x6 + 353.84 x7 + 119.51 x8 + 271.98 x9 - 410.84 x10 + 353.19 x11 + 500.78 x12 - 556.59 x13 - 192.94 x14 - 48.36 x15 + 174.16 x16 + 784.86 x17 + 740.45 x18 + 767.39 x19 - 351.58 x20 ⩵ -836.4

469.02 x1 + 668.92 x2 - 11.59 x3 + 753.51 x4 + 707.9 x5 + 840.63 x6 + 721.59 x7 - 481.73 x8 + 49.17 x9 + 251.69 x10 - 571.51 x11 - 828.33 x12 - 472.26 x13 - 172.72 x14 + 2.37 x15 - 218.71 x16 + 266.92 x17 - 953.73 x18 - 97.48 x19 - 67.55 x20 ⩵ 317.83

169.26 x1 + 798.32 x2 - 135.73 x3 - 458.94 x4 + 40.17 x5 - 594.19 x6 - 334.26 x7 - 489.39 x8 + 808.86 x9 - 78.5 x10 + 320.69 x11 - 98.82 x12 - 576.33 x13 + 157.87 x14 - 772.42 x15 + 552.54 x16 + 304.47 x17 - 788.61 x18 - 182.78 x19 - 826.79 x20 ⩵ -402.

-552.42 x1 - 113.19 x2 - 580.43 x3 + 990.18 x4 - 615.94 x5 + 718.8 x6 - 648.02 x7 - 826.76 x8 + 249. x9 - 630.9 x10 + 631.84 x11 + 649.54 x12 + 133.88 x13 + 199.25 x14 + 950.14 x15 - 377.78 x16 - 270.66 x17 - 775.68 x18 + 23.61 x19 + 306.48 x20 ⩵ 790.

-543.17 x1 + 117.75 x2 + 359.13 x3 + 883.1 x4 + 865.15 x5 + 678.63 x6 - 238.36 x7 - 34.73 x8 + 52.67 x9 + 68.47 x10 + 203.12 x11 - 59.59 x12 - 492.75 x13 + 860.32 x14 - 838.9 x15 + 628.1 x16 - 9.23 x17 - 958.24 x18 + 850.51 x19 - 62.33 x20 ⩵ -745.84

811.41 x1 + 12.92 x2 - 866.6 x3 + 19.57 x4 - 363.81 x5 - 875.38 x6 - 971.07 x7 + 845.35 x8 - 992.7 x9 + 175.22 x10 - 860.87 x11 + 966.07 x12 - 352.11 x13 + 183.6 x14 - 933.21 x15 + 370.88 x16 - 24.71 x17 + 380.07 x18 - 670.33 x19 + 169.47 x20 ⩵ -903.4

-600.08 x1 - 512.71 x2 - 462.16 x3 + 167.76 x4 + 630.07 x5 + 523.52 x6 - 335.63 x7 + 15.39 x8 - 936.2 x9 - 356.16 x10 + 123.8 x11 - 470.64 x12 + 80.95 x13 - 387.57 x14 - 777.32 x15 - 71.62 x16 - 403.13 x17 + 519.81 x18 + 516.76 x19 + 186.9 x20 ⩵ -367.55

378.95 x1 - 467.7 x2 - 861.62 x3 - 111.97 x4 + 220.49 x5 + 170.97 x6 - 533.27 x7 - 658.91 x8 - 979.97 x9 + 427.84 x10 - 807.15 x11 - 849.86 x12 - 571.91 x13 - 99.13 x14 - 414.3 x15 + 645.45 x16 - 543.21 x17 - 35.32 x18 - 97.47 x19 - 324.59 x20 ⩵ -564.15

-492.87 x1 + 227.51 x2 - 667.17 x3 + 246.83 x4 + 557.13 x5 - 856.95 x6 + 56.34 x7 + 798.44 x8 + 507.54 x9 + 592.74 x10 - 110.29 x11 + 362.36 x12 - 128.01 x13 - 377.34 x14 + 638.49 x15 - 873.77 x16 - 928.8 x17 - 735.66 x18 + 882.01 x19 - 338.56 x20 ⩵ 278.43

631.87 x1 - 540.45 x2 - 238.7 x3 + 985.6 x4 + 152.46 x5 - 638.94 x6 - 398.08 x7 + 927.71 x8 - 136.97 x9 - 619.1 x10 - 712.02 x11 - 454.88 x12 + 328.99 x13 + 839.72 x14 - 51.3 x15 + 648.65 x16 - 4.9 x17 + 629.45 x18 - 539.45 x19 - 666.51 x20 ⩵ 483.

-284.08 x1 - 965.25 x2 + 692.73 x3 + 435.32 x4 - 421.15 x5 - 477.05 x6 - 778.96 x7 + 858.4 x8 - 583.6 x9 + 639.09 x10 - 848.11 x11 - 724.28 x12 + 494.36 x13 - 698.93 x14 - 247.34 x15 + 286.78 x16 + 177.74 x17 - 158.99 x18 + 854.85 x19 - 643.42 x20 ⩵ -483.35

-696.29 x1 - 353.8 x2 - 114.64 x3 + 531.11 x4 - 853.14 x5 - 501.3 x6 - 0.28 x7 + 92.94 x8 + 797.43 x9 - 989.77 x10 - 465.1 x11 - 135.54 x12 - 210.06 x13 - 54.58 x14 - 515.13 x15 + 943.77 x16 + 199.82 x17 - 119.55 x18 - 667.3 x19 + 399.16 x20 ⩵ -197.66

562.68 x1 - 843.81 x2 + 388.52 x3 - 996.41 x4 - 96.69 x5 + 835.98 x6 + 774.89 x7 + 838.07 x8 + 827.36 x9 - 793.07 x10 + 84.5 x11 + 223.55 x12 + 821.56 x13 + 744.73 x14 - 94.48 x15 - 815.9 x16 + 188.7 x17 - 932.63 x18 + 174.47 x19 - 969.09 x20 ⩵ 19.54

204.75 x1 + 410.75 x2 + 695.21 x3 + 136.15 x4 + 159.5 x5 + 354.08 x6 + 113.38 x7 + 518.57 x8 + 583.42 x9 - 434.22 x10 + 171.11 x11 + 30.25 x12 - 879.34 x13 + 826.11 x14 + 762.62 x15 + 611.79 x16 - 947.76 x17 + 269.34 x18 - 266.05 x19 - 843.78 x20 ⩵ 808.97

-686.75 x1 + 800.09 x2 + 546.7 x3 - 70.72 x4 + 553.74 x5 - 643.98 x6 - 111.55 x7 + 296.34 x8 - 864.56 x9 + 362.37 x10 - 271.52 x11 - 604.26 x12 - 577.72 x13 - 281.44 x14 - 421.57 x15 - 318.52 x16 + 708.66 x17 - 802.64 x18 + 139.21 x19 + 180.08 x20 ⩵ -335.67

-737.56 x1 - 62.46 x2 + 917.99 x3 + 840.56 x4 + 819.04 x5 + 454.84 x6 - 819.73 x7 + 934.08 x8 - 535.84 x9 - 878.05 x10 + 606.05 x11 + 815.06 x12 - 34.63 x13 + 234.29 x14 + 887.2 x15 + 322.67 x16 - 587.67 x17 + 964.14 x18 + 348.76 x19 - 918.05 x20 ⩵ -467.79

927.55 x1 + 77.85 x2 - 959.3 x3 + 941.95 x4 + 947.41 x5 + 895.7 x6 - 313.83 x7 - 597.41 x8 + 349.24 x9 - 425.99 x10 - 814.86 x11 - 98.2 x12 - 671.63 x13 + 856.94 x14 + 749.07 x15 - 191.32 x16 - 979.13 x17 + 923.73 x18 - 428.21 x19 - 862.77 x20 ⩵ -232.68

-525.57 x1 - 614.14 x2 - 906.27 x3 + 130.58 x4 + 387.06 x5 - 402.56 x6 - 72.54 x7 - 421.9 x8 + 958.16 x9 - 670.52 x10 - 641.16 x11 + 614.21 x12 - 669.64 x13 - 623.88 x14 - 819.64 x15 + 816.26 x16 + 905.78 x17 + 753.09 x18 - 607.54 x19 + 720.61 x20 ⩵ 786.12

Before solving a linear system, it is important to analyze the properties of the system that may suggest
what method is best for solving a system efficiently or if the system has a solution at all. These prelimi-
nary computations are especially important for a computer to perform because the results will indi-
cate to the computer what is the most optimal algorithm that solves the system. For example, if a
computer knows it is given a sparse linear system, a system with a coefficient matrix that has more
zero than non-zero values, then the computer can allocate memory that will only store the nonzero
values and perform mathematical operations on those non-zero values alone. Lack of consideration
of the properties of the system may result in an inappropriate use of an algorithm that yields an
answer with low precision due to round-off or truncation errors, or a solution that is generated after a
long period of time.

The first step is to represent the linear system as a matrix equation Ax=b where A is an element of a 20
by 20 dimensional real number set. The most important properties of the system can be observed
through matrix A especially because it makes up the bulk of the values in the system. Thus most of the
analysis will be on this coefficient matrix besides the system as a whole.

Kevin Perez Exploring methods for solving linear systems April 2021

Linear Systems May not be copied or distributed without the permission of the author Page 7 of 21

A =

65.94 -440.77 -594.7 699.79 -417.02 432.28 -572.34 -907.73 -267.13 -182.45 -266.27 462.43 842.9 233.29 995.66 704.14 148.03 970.26 371.37 -188.38

626.79 632.85 832.5 919.47 -147.94 129.16 -413.52 -903.96 -984.56 -28.04 807.26 -314.4 297.48 -562.44 -238.82 926.47 -983.03 -613.3 -971.89 -322.12

379.34 443.73 -757.34 537.64 -531.19 709.44 353.84 119.51 271.98 -410.84 353.19 500.78 -556.59 -192.94 -48.36 174.16 784.86 740.45 767.39 -351.58

469.02 668.92 -11.59 753.51 707.9 840.63 721.59 -481.73 49.17 251.69 -571.51 -828.33 -472.26 -172.72 2.37 -218.71 266.92 -953.73 -97.48 -67.55

169.26 798.32 -135.73 -458.94 40.17 -594.19 -334.26 -489.39 808.86 -78.5 320.69 -98.82 -576.33 157.87 -772.42 552.54 304.47 -788.61 -182.78 -826.79

-552.42 -113.19 -580.43 990.18 -615.94 718.8 -648.02 -826.76 249. -630.9 631.84 649.54 133.88 199.25 950.14 -377.78 -270.66 -775.68 23.61 306.48

-543.17 117.75 359.13 883.1 865.15 678.63 -238.36 -34.73 52.67 68.47 203.12 -59.59 -492.75 860.32 -838.9 628.1 -9.23 -958.24 850.51 -62.33

811.41 12.92 -866.6 19.57 -363.81 -875.38 -971.07 845.35 -992.7 175.22 -860.87 966.07 -352.11 183.6 -933.21 370.88 -24.71 380.07 -670.33 169.47

-600.08 -512.71 -462.16 167.76 630.07 523.52 -335.63 15.39 -936.2 -356.16 123.8 -470.64 80.95 -387.57 -777.32 -71.62 -403.13 519.81 516.76 186.9

378.95 -467.7 -861.62 -111.97 220.49 170.97 -533.27 -658.91 -979.97 427.84 -807.15 -849.86 -571.91 -99.13 -414.3 645.45 -543.21 -35.32 -97.47 -324.59

-492.87 227.51 -667.17 246.83 557.13 -856.95 56.34 798.44 507.54 592.74 -110.29 362.36 -128.01 -377.34 638.49 -873.77 -928.8 -735.66 882.01 -338.56

631.87 -540.45 -238.7 985.6 152.46 -638.94 -398.08 927.71 -136.97 -619.1 -712.02 -454.88 328.99 839.72 -51.3 648.65 -4.9 629.45 -539.45 -666.51

-284.08 -965.25 692.73 435.32 -421.15 -477.05 -778.96 858.4 -583.6 639.09 -848.11 -724.28 494.36 -698.93 -247.34 286.78 177.74 -158.99 854.85 -643.42

-696.29 -353.8 -114.64 531.11 -853.14 -501.3 -0.28 92.94 797.43 -989.77 -465.1 -135.54 -210.06 -54.58 -515.13 943.77 199.82 -119.55 -667.3 399.16

562.68 -843.81 388.52 -996.41 -96.69 835.98 774.89 838.07 827.36 -793.07 84.5 223.55 821.56 744.73 -94.48 -815.9 188.7 -932.63 174.47 -969.09

204.75 410.75 695.21 136.15 159.5 354.08 113.38 518.57 583.42 -434.22 171.11 30.25 -879.34 826.11 762.62 611.79 -947.76 269.34 -266.05 -843.78

-686.75 800.09 546.7 -70.72 553.74 -643.98 -111.55 296.34 -864.56 362.37 -271.52 -604.26 -577.72 -281.44 -421.57 -318.52 708.66 -802.64 139.21 180.08

-737.56 -62.46 917.99 840.56 819.04 454.84 -819.73 934.08 -535.84 -878.05 606.05 815.06 -34.63 234.29 887.2 322.67 -587.67 964.14 348.76 -918.05

927.55 77.85 -959.3 941.95 947.41 895.7 -313.83 -597.41 349.24 -425.99 -814.86 -98.2 -671.63 856.94 749.07 -191.32 -979.13 923.73 -428.21 -862.77

-525.57 -614.14 -906.27 130.58 387.06 -402.56 -72.54 -421.9 958.16 -670.52 -641.16 614.21 -669.64 -623.88 -819.64 816.26 905.78 753.09 -607.54 720.61

b =

34.47
903.16
-836.4
317.83
-402.
790.

-745.84
-903.4
-367.55
-564.15
278.43
483.

-483.35
-197.66
19.54
808.97
-335.67
-467.79
-232.68
786.12

x =

x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
x14
x15
x16
x17
x18
x19
x20

First analysis: a hint of triviality

A homogeneous system has the form Ax=0 such that the right hand side of each equation is equal to
zero. This type of system always has at least one solution known as the trivial solution which will be
discussed further later in this document. The system given above, however, is in the form Ax=b which
makes it a nonhomogeneous system. Such a system may have a solution set of zero, one, or infinitely
many solutions. This fact does not help determine whether the nonhomogeneous system will have a
solution or not, but in the case that it were homogeneous, it would be an important observation; thus,
it is worth mentioning here. Because of some important similarities between Ax=b and Ax=0, this

April 2021 Exploring methods for solving linear systems Kevin Perez

Page 8 of 21 May not be copied or distributed without the permission of the author Linear Systems

topic will be further discussed after exploring methods for solving the linear system.

Second analysis: constraint counting

A linear system is undetermined when it has morce unknown variables than equations and overdeter-
mined if it has more equations than variables. An underdetermined system has fewer equations than
unknown variables, and it may have no solutions or infinitely many solutions. An overdetermined
system has more equations than unknown variables, and it usually has no solution, unless some rows
in the matrix can be zero-ed so that there are as many or less non-zero rows as there are unknown
variables. The system defined above is neither over- nor under-determined because it has 20 equa-
tions with 20 unknowns. Thus under these constraints the linear system may then have one solution,
infinitely many solutions, or no solutions.

Third analysis: does the determinant exist

The determinant of a matrix . Only a matrix that is square can have a determinant. If the determinant
of the square matrix A is nonzero, then a solution exists, otherwise a solution does not exist.

Determinant of A (Det [A]) = 8.14804 × 1063

Because the determinant is non-zero, the methods for solving Ax=b should yield a solution set contain-
ing one or more solutions.

Fourth analysis: existence of an inverse matrix A

This analysis concerns only the coefficient matrix A because by the invertible matrix theorem, a matrix
that is invertible is a singular matrix; if it is not invertible, it is a nonsingular matrix. For a matrix to
be invertible, it must be square.

5. Methods for solving the unknown variables in a
linear system

Below are various methods for finding solutions to linear systems with unknown variables. These
methods will be demonstrated by solving the linear system introduced in the previous section.

I. Gaussian elimination with backward substitution and partial pivoting

Gaussian elimination with backward substitution is the simplest and most common direct method for
solving a linear system. It is defined as a sequence of steps which can be programmatically imple-
mented and executed a computer. The computer can deliver a solution in a predictable amount of
time because the sequence of steps are almost identical for any linear system. If a system does not
have a solution, the algorithm will halt when some inconsistencies appear after a step in the algo-
rithm; thus it can itself be used to determine when a system does not have a solution without prior
analysis of the linear system.

Kevin Perez Exploring methods for solving linear systems April 2021

Linear Systems May not be copied or distributed without the permission of the author Page 9 of 21

Before applying the row reduction algorithm, the linear system should be shown in the augmented
matrix form (A | b) as a reminder that the left and right hand side of the equations need to be manipu-
lated while solving for x. The procedural steps that reduce the linear system will be referred to as the
forward phase of the algorithm. After the forward phase has successfully been completed and all the
equations have been reduced, the backward phase is executed. After backward phase terminates, the
solution set of the system will be revealed with one, many, or no solutions.

Forward phase (row reduction)

Let R1, ... , Rn denote each row in the augmented matrix (A | b). Each row reduction step can be summa-
rized as follows:

Rj - aji  aii Ri  → Rj

This says that some row j = i+1, i+2, … , n below row i can be replaced by subtracting its values by the
a factor of the values in row i above [1, pp. 366]. This operation is known as row replacement. To
successfully perform the operation, the row i above row j should have a non-zero leading coefficient,

or pivot element denoted by aii , in one of the columns. If there is no row above row j with a pivot

element, then perform a row interchange operation. The row interchange operation should inter-
change a row i above row j with a row that has a pivot element or row j itself.

If it has not become obvious, the goal of the forward phase of the algorithm is to change the coeffi-

cients below the pivot element to zero. The pivot elements aii run along the diagonal, and the

columns with the pivot element that are receiving this treatment are referred to as the pivot columns.
This should effectively transform matrix A into an upper triangular matrix, or a matrix with nonzero
values only along and above the diagonal.

a11 a12 ⋯ ⋯ a1 n ⋮ b1

a21 a22 ⋯ ⋯ a2 n ⋮ b2

⋮ ⋮ ⋱ ⋮ ⋮ ⋮

⋮ ⋮ ⋱ ⋮ ⋮ ⋮

am 1 am 2 ⋯ ⋯ amn ⋮ bm

 ~

a11 a12 ⋯ ⋯ a1 n ⋮ b1

0 a22 ⋯ ⋯ a2 n ⋮ b2

0 0 ⋱ ⋮ ⋮ ⋮

⋮ ⋮ ⋱ ⋱ ⋮ ⋮ ⋮

0 ⋯ ⋯ 0 amn ⋮ bm

The forward phase is complete. The original matrix (A | b) has been transformed into an equivalent
matrix in row echelon form where the matrix is upper triangular and the diagonal elements are non-
zero. It is important to remember that the new, row-reduced matrix is row equivalent to the original
matrix because both sides of the equations were treated with elementary row operations.

By this point, we can identify the system is consistent, meaning it has a solution, if the matrix A has a
pivot element in every row. Furthermore, if every column in A is a pivot column, which is the case
when A is a square matrix, then there exists a unique solution. and whether or not b spans the
columns of A [1, pp. 39].

Failure points
If the system has no solution, the algorithm would have aborted before producing an echelon
matrix.
The algorithm would abort after a row reduction step if there is a row in the augmented matrix in
the form [0 … 0 b] where b is a nonzero value because 0=b is a contradiction. In this event, the
system is labeled as inconsistent and thus has no solution.

April 2021 Exploring methods for solving linear systems Kevin Perez

Page 10 of 21 May not be copied or distributed without the permission of the author Linear Systems

Below is the row echelon form of the system define in section 4.

(* Good Scripts - Dr. Vlasov *)

Aaug = Transpose [Join [Transpose [A], {b}]];

(* Convert decimal coefficients to rationals *)

(*refAaug =Rationalize @REF[Aaug];*)

refAaug = REF[Aaug];

refA = refAaug 〚All, 1 ;; -2〛;

refB = refAaug 〚All, -1〛;

rrefAaug = Rationalize @ RowReduce [Aaug];

rrefA = rrefAaug 〚All, 1 ;; -2〛;

rrefB = rrefAaug 〚All, -1〛;

refSystem1 = matrixToSystem [refA, refB];

(* Extract the coefficients in the system *)

refAugCoeff = Normal@ CoefficientArrays [refSystem1 , vars];

DisplayForm [GridBox [{{"", Style [Column [refSystem1], 6]}}]]

 Column [matrixToSystem [REF [{{65.94 , -440.77 , -594.7 , 699.79 , -417.02 , 432.28 , -572.34 , -907.73 , -267.13 , -182.45 , -266.27 , 462.43 , 842.9 , 233.29 , 995.66 , 704.14 , 148.03 , 970.26 , 371.37 ,

Backward phase (back substitution)

The backward substitution procedure begins when the matrix is in echelon form. The backward
phase consists of solving an equation in the system for an unknown variable by replacing other vari-
ables in that equation by their known values. The procedure almost always begins at the last row of
the system after the system has been reduced to row echelon form. If there is a row that contains all
zeros, usually seen in the last row(s) after reducing the matrix, then the system has one or more free
variables. Intuitively, the free variables are free to have any value and the system remains valid. The
variables that lead the equations, known as basic variables, are determined to have a value based on
other basic or free variables.

Failure points
If it is observed that a variable is assigned two different values, then it is said that a contradiction
exists [2, pp. 36]. As a result, the system has no solution because it is not possible for a variable to
simultaneously hold two different values.

After completion of backward substitution, the result would be a unique solution computed using
Mathematica:

Kevin Perez Exploring methods for solving linear systems April 2021

Linear Systems May not be copied or distributed without the permission of the author Page 11 of 21

Size of solution set for Ax=b: 1

x =

x1 → 8.13608
x10 → -7.73387
x11 → -0.625227
x12 → -1.67103
x13 → -1.27248
x14 → -2.35027
x15 → 3.26399
x16 → 1.52209
x17 → -1.01244
x18 → -2.10871
x19 → 6.66244
x2 → -0.120077
x20 → 7.00351
x3 → 2.53976
x4 → -2.02836
x5 → 2.53005
x6 → -3.02625
x7 → -3.50323
x8 → -0.578323
x9 → 0.959808

II. Solving for x with the inverse of A

Similar to how real numbers have a multiplicative inverse, a matrix can also have an inverse under
certain conditions. For a matrix to be invertible it must be square. The matrix should also be row

equivalent to the identity matrix which is the matrix containing only the value 1 along the diagonal.
That is to say, for the matrix A to be invertible, it should be possible to reduce it to the identity matrix
[2, pp. 111]. During the analysis it was discovered using Mathematica that the matrix A is nonsingular,

or invertible. Applying the multiplicative inverse of A to both sides of the equation Ax=b, it will be

apparent that x can be found by multiplying A-1 by b.

Ax = b ⇔ A-1 Ax = A-1b ⇔ Ix = A-1b ⇔ x = A-1b

Using Mathematica to solve for x by calculating A-1b, the solution should be similar if not the same as
the solution obtained by Gaussian elimination with backward substitution.

April 2021 Exploring methods for solving linear systems Kevin Perez

Page 12 of 21 May not be copied or distributed without the permission of the author Linear Systems

method2Solution = Inverse [A].b;

StandardForm @ Column Row" A-1b = x = ", method2Solution // MatrixForm 

A-1b = x =

8.13608
-0.120077
2.53976
-2.02836
2.53005
-3.02625
-3.50323
-0.578323
0.959808
-7.73387
-0.625227
-1.67103
-1.27248
-2.35027
3.26399
1.52209
-1.01244
-2.10871
6.66244
7.00351

Now that it has been computationally proven that a similar solution can be discovered using this
method, it is important to question whether this method will always yield a feasible solution and
whether it is a reasonable. To help answer this question, the calculation of the inverse matrix needs to
be observed.

Finding the inverse A-1

To find the inverse of A, a similar approach to gaussian elimination must be taken. Because it should
be possible to reduce the matrix A to the identity matrix for A-1 to exist, a row reduction algorithm
needs to be applied to the matrix. The Gaussian elimination row reduction algorithm presented in
method 1 only reduced the system until A was in row echelon form. However, the matrix could have
been further reduced to a form called reduced row echelon form.

A matrix is in reduced row echelon form when all the pivot elements are equal to 1, and all the ele-
ments above and below the pivot element are equal to 0. If the matrix is a square matrix, then the
square matrix, if it is consistent, could have a pivot element in every column which implies it would be
reduced to the invertible matrix if it is reduced to reduced row echelon form. If the square matrix is
inconsistent, then it would not be reduced to the invertible matrix.

But what can be done with the identity matrix when A has been reduced to it? What does the identity
matrix have to do with the inverse of A? During the process of reducing A, an identity matrix should
receive the same sequence of row operations performed on A. After the identity has received the same
sequence of row operations that transformed A into the inverse matrix, it will be transformed into A-1.
To guarantee that the identity matrix receives the same row operations as A, the identity matrix is
augmented to matrix A.

Kevin Perez Exploring methods for solving linear systems April 2021

Linear Systems May not be copied or distributed without the permission of the author Page 13 of 21

(A | I) =

a11 a12 ⋯ a1 n ⋮ 1 0 ⋯ 0

a21 a22 a2 n ⋮ 0 1 ⋮

⋮ ⋱ ⋮ ⋮ ⋮ ⋱ 0

an1 an2 ⋯ ann ⋮ 0 ⋯ 0 1

The Gaussian elimination algorithm only reduces the matrix A to row echelon form, therefore another
sequence of steps is required to further reduce the matrix A. Because the matrix A is already in upper
triangular form, all that is required to transform it into the identity matrix is scaling the rows so that
the pivot elements become 1 and replacement of the values above the diagonal with zeroes. Those
steps can be symbolically summarized as follows:

(aii / aii) Ri → Ri for each i = 1, 2, ... , n

aji - aji aii for each i = 1, 2, ... , n and j = i - 1, i - 2, ... , n - 1

After this is complete, the left side of the augmented matrix should be in the form of the identity
matrix and the right side should be the inverse matrix A-1.

(A I) ~ I A-1

Note
The entire process of reducing A to the identity matrix is known as the Gauss-Jordan method [2,
pp. 374]. The method can itself solve the system Ax=b, but because it is integral to finding the
inverse matrix and involves the Gaussian elimination algorithm introduced in the first method, it
will not be independently covered in this article. The goal of the method is to find a solution to
Ax=b without backward substitution which is similar to the approach of finding a solution using the
inverse of A.

Once the inverse matrix has been obtained, all that is required to solve for x is multiplication of the
inverse by column vector b. The vector-matrix multiplication is simply the dot product between each
row in A-1 and vector b.

III. LU Factorization

This method is the first in this article to introduce matrix factorization. Factoring a matrix is the
process of decomposing a matrix into multiple matrices, or in the case of LU Decomposition, the
decomposing the square matrix A into two matrices, L and U.

A = LU

Replacing A in the matrix equation Ax = b,

LUx = b

To further simplify the resulting matrix equation, Ux can be substituted with the with a vector y which
would be the result of multiplying matrix U with vector x. As a result we end up with the following two
equations:

Ly = b

Ux = y

The original matrix equation has been decomposed into two matrix equation. Now one system, Ly =

April 2021 Exploring methods for solving linear systems Kevin Perez

Page 14 of 21 May not be copied or distributed without the permission of the author Linear Systems

b, has to be solved before x from the original equation, now in Ux = y, can be solved.

The solution to the system using LU Decomposition is similar to the solution of the previous methods.

(* Reference [5] *)

luf = LinearSolve [A];

method3Solution = luf[b];

StandardForm @ Column [{Row[{" x = ", method3Solution // MatrixForm }]}]

x =

8.13608
-0.120077
2.53976
-2.02836
2.53005
-3.02625
-3.50323
-0.578323
0.959808
-7.73387
-0.625227
-1.67103
-1.27248
-2.35027
3.26399
1.52209
-1.01244
-2.10871
6.66244
7.00351

IV. Cramer’s method

Cramer’s rule provides the solution of determined compatible systems of linear equations (with a
single solution) by calculating determinants. It is a very fast method to solve systems, especially for
2x2 and 3x3 dimension systems. For larger dimensions, the determinants are much more cumber-
some. Since the system being solved has a 20 by 20 dimension, it is possible to solve for only 1 variable
without solving the whole system of equations.

When the system is square (same number of equations as of unknowns) and the matrix has an inverse,
it is called Cramer’s system.

Kevin Perez Exploring methods for solving linear systems April 2021

Linear Systems May not be copied or distributed without the permission of the author Page 15 of 21

cramers [A_, b_] := Module [{d = Det[A], a},

Table [a = A; a[[All, k]] = b; Det[a] / d, {k, Length [A]}]]

method4Solution = cramers [A, b];

StandardForm @ Column [{Row[{" x = ", method4Solution // MatrixForm }]}]

x =

8.13608
-0.120077
2.53976
-2.02836
2.53005
-3.02625
-3.50323
-0.578323
0.959808
-7.73387
-0.625227
-1.67103
-1.27248
-2.35027
3.26399
1.52209
-1.01244
-2.10871
6.66244
7.00351

6. Solution verification and analysis
According to the methods discussed above, a solution exists, thus b is a linear combination of Ax, or, b
spans A which is to say that b can be written as a linear combination of the columns of A. However,
before claiming that this is the solution to the system.

I. Gaussian elimination with backward substitution and partial pivoting

The following method is the simplest: substitute x with the values of the solution vector, multiply A by
x, and verify that the left hand side of the linear equations equals the right hand side. The following
are the results of the calculations using Mathematica:

False , True , True , True , True , True , True , True , False , True , False , True , True , False , False , True , False , True , False , True 

Total equations satisfied by solution = 13

The result shows that some of the equations in the system are not satisfied by the solution produced
by Gaussian elimination with backward substitution.

If the precision of the values in the calculation are increased, it is possible that the system will yield a
solution that satisfies the system. The solution that was originally discovered had a precision of 5

April 2021 Exploring methods for solving linear systems Kevin Perez

Page 16 of 21 May not be copied or distributed without the permission of the author Linear Systems

decimal places. If the method is used with higher precision, the solution would be the values below.

Style@

Row[{"x = ", DisplayForm [GridBox [{{"", Column [method1solutionHighPrecision [[1]]]}}]]}]

x =

x1 → 8.136080737132454456541210830991966710307741655925792806629
x2 → -0.12007743281399257909804809766834194695090354869763228061783
x3 → 2.5397644740915655704666569344807069385375337586828932600446
x4 → -2.0283642568319577002051592921142169520008696062534730477269
x5 → 2.5300545357287541238548349978778334442816978468888113619032
x6 → -3.0262480649807310600623121286513883011573143185747903027702
x7 → -3.5032301315368108591632001948563496876614314512190716955120
x8 → -0.5783228813626897765457529074974894782003972827249122235239
x9 → 0.9598079025565589427031013401339061200125674443803152597914
x10 → -7.733865938624210291156951140401060420340779566159818778203
x11 → -0.6252272949695070135425203543462943390005486872631897869605
x12 → -1.6710306219744049886857320959428618170416900136720527718726
x13 → -1.2724840141212297842079124912606560483749662979535894617035
x14 → -2.3502733381564141683507767203213314322362524043539115015500
x15 → 3.2639895698571409097339152086338883577806129738658098441611
x16 → 1.5220856406523025945037674841081594177468655242894619141411
x17 → -1.0124441753653518574121238737432110803398005431017068434973
x18 → -2.1087114121692641318873950195368294715592399083690719590363
x19 → 6.662442569460828872310317660903125250345447199699877647653
x20 → 7.003512197401151219391475868334608521193451337696176691059

Multiplying A by the solution above again using Mathematica would produce the following verifica-
tion results:

False , True , True , True , True , True , True , True , True , True , True , True , True , True , False , True , True , True , True , True 

Total equations satisfied by high precision solution = 18

Interestingly, the solution still does not satisfy 2 of the equations. This implies that Gaussian elimina-
tion with backward substitution and partial pivoting may be experiencing rounding errors due to
insufficient computer memory to hold high precision values.

II. Solving for x with the inverse of A

To prove that the solution provided by the inverse method, matrix A will be multiplied by the solution.
The result should be a vector equivalent to vector b.

SetPrecision [A, 60].{method2Solution /. Rule → (#2 &)}[[1]] ⩵ b

False

Mathematica returned that the product of Ax is not equivalent to b.

III. LUDecomposition

In numerical analysis there is a topic about condition numbers that describe how susceptible a system

Kevin Perez Exploring methods for solving linear systems April 2021

Linear Systems May not be copied or distributed without the permission of the author Page 17 of 21

is to rounding errors [1, pp. 478]. One of the condition numbers is called the infinity norm and it can
be obtained using Mathematica’s LUDecomposition function. The result is:

(*Infinity norm is the third element returned by LUDecomposition *)

StandardForm @ Column [{Row[{" Infinity norm = ", LUDecomposition [A][[3]]}]}]

Infinity norm = 371.637

This value is the maximum absolute row sum in the matrix A. It has been studied that if the condition
number is much greater than 1, then the matrix may be considered ill-conditioned and that high
precision calculations should be performed to avoid rounding errors [6]. A rounding error can be
severe enough that an entry in the matrix will be changed to 0 which is quite significant if precision in
the solution is important. This explains why the solution is not satisfying Ax=b.

7. Detailed answer
The given system had the following coefficient matrix A

StandardForm @ Column [{Row[{Style [MatrixForm [A], 7]}]}]

65.94 -440.77 -594.7 699.79 -417.02 432.28 -572.34 -907.73 -267.13 -182.45 -266.27 462.43 842.9 233.29 995.66 704.14 148.03 970.26 371.37

626.79 632.85 832.5 919.47 -147.94 129.16 -413.52 -903.96 -984.56 -28.04 807.26 -314.4 297.48 -562.44 -238.82 926.47 -983.03 -613.3 -971.89

379.34 443.73 -757.34 537.64 -531.19 709.44 353.84 119.51 271.98 -410.84 353.19 500.78 -556.59 -192.94 -48.36 174.16 784.86 740.45 767.39

469.02 668.92 -11.59 753.51 707.9 840.63 721.59 -481.73 49.17 251.69 -571.51 -828.33 -472.26 -172.72 2.37 -218.71 266.92 -953.73 -97.48

169.26 798.32 -135.73 -458.94 40.17 -594.19 -334.26 -489.39 808.86 -78.5 320.69 -98.82 -576.33 157.87 -772.42 552.54 304.47 -788.61 -182.78

-552.42 -113.19 -580.43 990.18 -615.94 718.8 -648.02 -826.76 249. -630.9 631.84 649.54 133.88 199.25 950.14 -377.78 -270.66 -775.68 23.61

-543.17 117.75 359.13 883.1 865.15 678.63 -238.36 -34.73 52.67 68.47 203.12 -59.59 -492.75 860.32 -838.9 628.1 -9.23 -958.24 850.51

811.41 12.92 -866.6 19.57 -363.81 -875.38 -971.07 845.35 -992.7 175.22 -860.87 966.07 -352.11 183.6 -933.21 370.88 -24.71 380.07 -670.33

-600.08 -512.71 -462.16 167.76 630.07 523.52 -335.63 15.39 -936.2 -356.16 123.8 -470.64 80.95 -387.57 -777.32 -71.62 -403.13 519.81 516.76

378.95 -467.7 -861.62 -111.97 220.49 170.97 -533.27 -658.91 -979.97 427.84 -807.15 -849.86 -571.91 -99.13 -414.3 645.45 -543.21 -35.32 -97.47

-492.87 227.51 -667.17 246.83 557.13 -856.95 56.34 798.44 507.54 592.74 -110.29 362.36 -128.01 -377.34 638.49 -873.77 -928.8 -735.66 882.01

631.87 -540.45 -238.7 985.6 152.46 -638.94 -398.08 927.71 -136.97 -619.1 -712.02 -454.88 328.99 839.72 -51.3 648.65 -4.9 629.45 -539.45

-284.08 -965.25 692.73 435.32 -421.15 -477.05 -778.96 858.4 -583.6 639.09 -848.11 -724.28 494.36 -698.93 -247.34 286.78 177.74 -158.99 854.85

-696.29 -353.8 -114.64 531.11 -853.14 -501.3 -0.28 92.94 797.43 -989.77 -465.1 -135.54 -210.06 -54.58 -515.13 943.77 199.82 -119.55 -667.3

562.68 -843.81 388.52 -996.41 -96.69 835.98 774.89 838.07 827.36 -793.07 84.5 223.55 821.56 744.73 -94.48 -815.9 188.7 -932.63 174.47

204.75 410.75 695.21 136.15 159.5 354.08 113.38 518.57 583.42 -434.22 171.11 30.25 -879.34 826.11 762.62 611.79 -947.76 269.34 -266.05

-686.75 800.09 546.7 -70.72 553.74 -643.98 -111.55 296.34 -864.56 362.37 -271.52 -604.26 -577.72 -281.44 -421.57 -318.52 708.66 -802.64 139.21

-737.56 -62.46 917.99 840.56 819.04 454.84 -819.73 934.08 -535.84 -878.05 606.05 815.06 -34.63 234.29 887.2 322.67 -587.67 964.14 348.76

927.55 77.85 -959.3 941.95 947.41 895.7 -313.83 -597.41 349.24 -425.99 -814.86 -98.2 -671.63 856.94 749.07 -191.32 -979.13 923.73 -428.21

-525.57 -614.14 -906.27 130.58 387.06 -402.56 -72.54 -421.9 958.16 -670.52 -641.16 614.21 -669.64 -623.88 -819.64 816.26 905.78 753.09 -607.54

Represented as vector b, the right hand side of the given system had the following values:

April 2021 Exploring methods for solving linear systems Kevin Perez

Page 18 of 21 May not be copied or distributed without the permission of the author Linear Systems

StandardForm @ Column [{Row[{Style [" b = ", Bold], Style [MatrixForm [b], 10]}]}]

b =

34.47
903.16
-836.4
317.83
-402.
790.

-745.84
-903.4
-367.55
-564.15
278.43
483.

-483.35
-197.66
19.54
808.97
-335.67
-467.79
-232.68
786.12

Given linear system No. 01, the linear system was found to be consistent because every method used
to solve the system yielded a solution. Every method output the same solution. It was also verified at
the solution, represented by vector x satisfied the system when it was plugged in.

The solution of the system is unique and it is:

Style@ Row[{"x = ", DisplayForm [GridBox [{{"", Column [method1solution [[1]]]}}]]}]

x =

x1 → 8.13608
x10 → -7.73387
x11 → -0.625227
x12 → -1.67103
x13 → -1.27248
x14 → -2.35027
x15 → 3.26399
x16 → 1.52209
x17 → -1.01244
x18 → -2.10871
x19 → 6.66244
x2 → -0.120077
x20 → 7.00351
x3 → 2.53976
x4 → -2.02836
x5 → 2.53005
x6 → -3.02625
x7 → -3.50323
x8 → -0.578323
x9 → 0.959808

The solution of the given system was performed in Mathematica using the following methods:

1. Gaussian elimination with backward substitution

Kevin Perez Exploring methods for solving linear systems April 2021

Linear Systems May not be copied or distributed without the permission of the author Page 19 of 21

2. Inverse method (multiplying b by of A-1)

3. LU Decomposition

4. Cramer’s Rule

8. Conclusions
Research was done on each individual method for solving linear systems with the intention of finding
pros and cons between each method.

Research findings

It was discovered that all four methods used to solve the system produced the same solution. This
was surprising because some of the methods involve a lot more calculations than others. This may
imply that Mathematica is using very high precision during dot product multiplication.
Discuss the broader implications of those findings.

After solving the linear system, we can conclude that the linear system is consistent because it has a
solution. This became obvious transforming the augmented matrix using Gaussian elimination when
the augmented matrix and no row was in the form 0=b.

Unique, or it has only one solution. Uniqueness can be identified by observing if every column in the
coefficient matrix is a pivot column which implies there is only one solution.

When the inverse of matrix A was calculated using Mathematica, the majority of the values in the
matrix were very small. Most of the entries were smaller than .001 and one was below .000001. This is
concerning because if Mathematica were not using high precision values during intermediary opera-
tions, then it is possible that some of the entries in the matrix would have been changed to 0.

Research weaknesses

The report was weak on exposing the speed at which the methods can solve a linear system. It also
did not go into detail about how stable the methods are because that would require knowing exactly
how Mathematica implements the methods and the floating point precision used during computa-
tions. These are important topics in numerical analysis, and they should be considered by engineers
writing the algorithms that solve linear systems.

Future research

It would be fun to implement methods for solving (non-)linear systems in C/C++ to further explore
the memory consumption and execution times. It would be interesting to write some code that can
automate the analysis of linear systems such as finding the largest element in a matrix. Open source
libraries like LAPACK, Armadillo, or TNT which implement numerical methods for solving linear
systems in C++ would be good libraries to learn if linear systems need to be solved on embedded
systems or very large systems need to be solved.

In summary, it has been concluded that:

April 2021 Exploring methods for solving linear systems Kevin Perez

Page 20 of 21 May not be copied or distributed without the permission of the author Linear Systems

1. Solutions to linear systems solved computationally are not guaranteed to produce results that
satisfy the original system. Though the results may be good approximations.

2. Multiple methods need to verify that a solution found by one method can be found for another.
This reinforces the fact that there is (or there is not) a solution.

References
1. R. Burden, J. Faires, and A. Burden, “Numerical Analysis”, 9th Ed. Cengage learning 2010, pp.

351-417.

2. D. Lay, S. Lay, and J. McDonald, Linear algebra and its applications, 6th ed. Pearson Education,
2020, pp. 17-20, 115, 113.

3. M. Ruckert, Understanding MP3, 2nd ed. Wiesbaden [Allemagne]: Vieweg, 2005.

4. “001-Good scripts (Mathematica nb-file)”, Fiu.instructure.com. [Online]. Available:
https://fiu.instructure.com/courses/89558/files/14136897/preview?verifier=fRJPkfEv8GtLnpySpxx
QisAIjSJjw78XvYfnPaj3. [Accessed: 30- Mar- 2021].

5. Wolfram MathWorld, reference.wolfram.com [Online]. Available:
https://reference.wolfram.com/language/ref/LUDecomposition.html?view=all

6. Loughborough University[Online]. Available:
https://learn.lboro.ac.uk/archive/olmp/olmp_resources/pages/workbooks_1_50_jan2008/Workbo
ok30/30_4_mtrx_norms.pdf

Kevin Perez Exploring methods for solving linear systems April 2021

Linear Systems May not be copied or distributed without the permission of the author Page 21 of 21

